Concurrent algorithms for autonomous robot navigation in an unexplored terrain
نویسندگان
چکیده
Navigation planning is one of the most vital aspects of an autonomous mobile robot. The problem of navigation in a completely known obstacle terrain is solved in many cases. Comparatively less number of research results are reported in literature about robot navigation in a completely unknown obstacle terrain. In recent times, this problem is solved by imparting the learning capability to the robot. The robot explores the obstacles terrain using sensors and incrementally builds the terrain model. As the robot keeps navigating, the terrain model becomes more learned and the usage of sensors is reduced. The navigation paths are computed by making use of the existing terrain model. The navigation paths gradually approach global optimality as the learning proceeds. In this paper, we present concurrent algorithms for an autonomous robot navigation in an Unexplored terrain. These concurrent algorithms are proven to be free from deadlocks and starvation. The performance of the concurrent algorithms is analyzed in terms of the planning time, travel time, scanning time, and update time. The analysis reveals the need for an efiicient data structure for the obstacle terrain in order to reduce the navigation time of the robot, and also to incorporate leaming. The modified adjacency list is proposed as a data structure for the spatial graph that represents the obstacle terrain. The time complexities of various algorithms that access, maintain, and update the spatial graph are estimated, and the effectiveness of the the implementation is illustrated.
منابع مشابه
Robot Navigation in Unknown Terrains of Convex Polygonal Obstacles Using Learned Visibility Graphs
The problem of navigating an autonomous mobile robot through an unexplored terrain of obstacles is the focus of this paper. The case when the obstacles are ‘known’ has been extensively studied in literature. The process of robot navigation in completely unexplored terrains involves both learning the information about the obstacle terrain and path planning. We present an algorithm to navigate a ...
متن کاملQuick Goal Seeking Algorithm for Frontier based Robotic Navigation
There arises situations where an autonomous robot needs to navigate to a target location and no information is available about the terrain. Frontier based navigation is one of the most efficient methods of exploration and navigation for such situations. In a frontier based strategy, the robot navigates to the target location by detecting intermediate frontier regions, which are points lying on ...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملNavigation Techniques of Mobile Robots In Greenhouses
With the continuous development of the industrialization process, the countries all over the world gradually appeared lack of agricultural labor force and aging phenomenon, which was especially prominent in developed countries. However the agricultural robot with high operating efficiency, high qualities of work will play an increasingly important role in future agricultural production. Robot n...
متن کاملA Navigation System for Autonomous Robot Operating in Unknown and Dynamic Environment: Escaping Algorithm
In this study, the problem of navigation in dynamic and unknown environment is investigated and a navigation method based on force field approach is suggested. It is assumed that the robot performs navigation in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1986